lunes, 24 de septiembre de 2012

Johannes van der Waals y sus aportaciones a la fisicoquimica


 http://www.nndb.com/people/509/000099212/van-der-waals-1-sized.jpg

Johannes Diderik van der Waals (Leiden, Países Bajos, 23 de noviembre de 1837 - Ámsterdam, 8 de marzo de 1923) fue un profesor universitario y físico neerlandés galardonado con el Premio Nobel de Física en 1910.Hijo de Jacobus van der Waals y Elisabeth van den Burg. Fue profesor de una escuela y más tarde pudo asistir a la universidad, a pesar de su desconocimiento de las lenguas clásicas. Estudió entre 1862 y 1865, licenciándose en matemáticas y física. Se casó con Anna Magdalena Smit y tuvo cuatro hijos: tres mujeres (Anne Madeleine, la poetisa Jacqueline Elisabeth, Johanna Diderica) y un varón (el físico Johannes Diderik Jr).
En 1866, fue director de una escuela secundaria de La Haya. En 1873, obtuvo el grado de Doctor por sus tesis titulada "Over de Continuïteit van den Gas - en Vloeistoftoestand" (Sobre la continuidad de los estados líquido y gaseoso). En 1876, se convirtió en el primer profesor de física de la Universidad de Ámsterdam.

Investigaciones científicas

 Ecuación de Van der Waals


 La ecuación de Van der Waals es una ecuación de estado de un fluido compuesto de partículas con un tamaño no despreciable y con fuerzas intermoleculares, como las [[fuerzas de Van der Waals].Johannes Diderik van der Waals recibió el premio Nobel en 1910 por su trabajo en la ecuación de estado para gases y líquidos, la cual está basada en una modificación de la ley de los gases ideales para que se aproxime de manera más precisa al comportamiento de los gases reales al tener en cuenta su tamaño no nulo y la atracción entre sus partículas.
Una forma de esta ecuación es:

 

donde
p es la presión del fluido, medido en atmósferas
v es el volumen en el que se encuentran las partículas dividido por el número de partículas (en litros)
k es la constante de Boltzmann
T es la temperatura, en kelvin
a' es un término que tiene que ver con la atracción entre partículas
b' es el volumen medio excluido de v por cada partícula
Si se introducen el número de Avogadro, NA, el número de moles n y, consecuentemente, el número total de partículas n•NA, la ecuación queda en la forma siguiente:
 


 donde
p es la presión del fluido
V es el volumen total del recipiente en que se encuentra el fluido
a mide la atracción entre las partículas \scriptstyle a=N_\mathrm{A}^2 a'
b es el volumen disponible de un mol de partículas \scriptstyle \, b=N_\mathrm{A} b'
n es el número de moles
R es la constante universal de los gases ideales, \scriptstyle \,R= N_\mathrm{A} k
T es la temperatura, en kelvin


 Fuerzas de Van der Waals

 Es la fuerza atractiva o repulsiva entre moléculas (o entre partes de una misma molécula) distintas a aquellas debidas al enlace covalente o a la interacción electrostática de iones con otros o con moléculas neutras. El término incluye:
  • fuerzas dipolo permanente-dipolo permanente (fuerzas de Keesom o interacción dipolo-dipolo)
  • fuerzas dipolo permanente-dipolo inducido (fuerzas de Debye)
  • fuerzas dipolo inducido instantáneo-dipolo inducido (fuerzas de dispersión de London)
También se usa en ocasiones como un sinónimo para la totalidad de las fuerzas intermoleculares.

Las fuerzas de Van der Waals incluyen a atracciones entre átomos, moléculas, y superficies. Difieren del enlace covalente y del enlace iónico en que están causados por correlaciones en las polarizaciones fluctuantes de partículas cercanas (una consecuencia de la dinámica cuántica). Las fuerzas intermoleculares tienen cuatro contribuciones importantes. En general, un potencial intermolecular tiene un componente repulsivo (que evita el colapso de las moléculas debido a que al acercarse las entidades unas a otras las repulsiones dominan). También tiene un componente atractivo que, a su vez, consiste de tres contribuciones distintas:
  1. La primera fuente de atracción es la interacción electrostática, también denominada interacción de Keesom o fuerza de Keesom, en honor a Willem Hendrik Keesom.
  2. La segunda fuente de atracción es la inducción (también denominada polarización electroquímica), que es la interacción entre un ultipolo permanente en una molécula, con un multipolo inducido en otra. Esta interacción se mide algunas veces en debyes, en honor a Peter Debye.
  3. La tercera atracción suele ser denominada en honor a Fritz London que la denominaba dispersión. Es la única atracción experimentada por átomos no polares, pero opera entre cualquier par de moléculas, sin importar su simetría.
  4. A distancias de radios de Van der Waals.
Todas las fuerzas intermoleculares de Van der Waals presentan anisotropía (excepto aquellas entre átomos de dos gases nobles), lo que significa que dependen de la orientación relativa de las moléculas. Las interacciones de inducción y dispersión son siempre atractivas, sin importar su orientación, pero el signo de la interacción cambia con la rotación de las moléculas. Esto es, la fuerza electrostática puede ser atractiva o repulsiva, dependiendo de la orientación mutua de las moléculas.

Aqui les dejo un pequeño video para aclarar un poco mas acerca de estas fuerzas de van der waals.



miércoles, 5 de septiembre de 2012

Ley de las presiones parciales

La ley de las presiones parciales (conocida también como ley de Dalton) fue formulada en el año 1803 por el físico, químico y matemático británico John Dalton. Establece que la presión de una mezcla de gases, que no reaccionan químicamente, es igual a la suma de las presiones parciales que ejercería cada uno de ellos si sólo uno ocupase todo el volumen de la mezcla, sin cambiar la temperatura. La ley de Dalton es muy útil cuando deseamos determinar la relación que existe entre las presiones parciales y la presión total de una mezcla de gases.

Se puede hacer una definición de la teoría mediante la aplicación de matemáticas, la presión de una mezcla de gases puede expresarse como una suma de presiones mediante:
    Ptotal= P1 + P2 + ...+Pn

Donde P1, P2, Pn representan la presión parcial de cada componente en la mezcla.



Principio de Avogadro

http://fisicazone.com/wp-content/uploads/2010/10/avogadro.jpg 
La Ley de Avogadro (a veces llamada Hipótesis de Avogadro o Principio de Avogadro) es una de las leyes de los gases ideales. Toma el nombre de Amedeo Avogadro, quien en 1811 afirmó que:
"Volúmenes iguales de distintas sustancias gaseosas, medidos en las mismas condiciones de presión y temperatura, contienen el mismo número de partículas" 
 Por partículas debemos entender aquí moléculas, ya sean éstas poliatómicas (formadas por varios átomos, como O2, CO2 o NH3) o monoatómicas (formadas por un solo átomo, como He, Ne o Ar).

 No fue hasta 1814 cuando Avogadro admitió la existencia de moléculas formadas por dos o más átomos. Según Avogadro, en una reacción química una molécula de reactivo debe reaccionar con una o varias moléculas de otro reactivo, dando lugar a una o varias moléculas del producto, pero una molécula no puede reaccionar con un número no entero de moléculas, ya que la unidad mínima de un reactivo es la molécula. Debe existir, por tanto, una relación de números enteros sencillos entre las moléculas de los reactivos, y entre estas moléculas y las del producto.
También el enunciado inverso es cierto: "Un determinado número de moléculas de dos gases diferentes ocupan el mismo volumen en idénticas condiciones de presión y temperatura".
Esta ley suele enunciarse actualmente también como: "La masa molecular o mol de diferentes sustancias contiene el mismo número de moléculas".
El valor de este número, llamado número de Avogadro es aproximadamente 6,022212 × 1023 y es también el número de átomos que contiene la masa atómica o mol de un elemento.
Para explicar esta ley, Avogadro señaló que las moléculas de la mayoría de los gases elementales más habituales eran diatómicas (hidrógeno, cloro, oxígeno, nitrógeno, etc), es decir, que mediante reacciones químicas se pueden separar en dos átomos.
La ley de Avogadro no fue admitida inicialmente por la comunidad científica. No lo fue hasta que en 1860 Cannizzaro presentó en el primer Congreso Internacional de Química, el Congreso de Karlsruhe, un artículo (publicado en 1858) sobre la hipótesis de Avogadro y la determinación de pesos atómicos.